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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. S1O

,,

IMPACT OF A VEE-TYPE SEAPLANE ON WATER WITH

REFERENCE TO ELASTICITY*

By F. Weinig

The theory developed by H. Wagner for the computation
of the landing impact on water for a rigid float is extend-
ed to include elastic floats by introducing the concept of
an equivalent rigid bottom to substitute for the actual
elastic bottom.

OBJECT OF INVESTIGATION

The theory developed by H. Wagner for the computation
of the landing of float bottoms on the water is extended
to include bottoms having elasticity in order to take ac-
count of the elasticity factor on the landing impact.

WAGNER;S THEORY OF THE IMPACT OF VEE-TYPE FLOATS

WITH RIGID BOTTOMS

Let the downward velocity of the seaplane V just
before impact be denoted by Vo. During the immersion
process which is assumed to “start at t=o, v = v(t).

In investigating the im~act me assume for convenience
that the float is at rest while the water is in motion
relative to it. Essentially this flow is similar to that
of an infinite fluid about & flat plate at rest, the width
2C of the plate corresponding to the instantaneous width
of the impact area of the float (fig. 1). The velocity of

*llBerucksichtigung der Elastizi”tlt beim Aufschlag eines
gekielten ?i’lugzeugschwimmers auf das Was.ser.’’.,,.,
Luftfahrtforschung, vol. 13, no. 5, May 20, 1936, PPO
155-159.

.—— —... —



. .. .

2 N.A.C.A, Technimal Memorandum”No. 810

the water particles at the free surface (X> c) is

The rise Y of the water measured from the instant of im-
mersion is

=ftvntit=ft
T iit

Y
o 0/=3”

The width of the impact area increases with time; i.e. ,
c = c(t), so that since t = t(c), v = v(c)

c‘x

As soon
edge of

We set

“(c)‘=%’ ‘=c~F$
as the water particle. at position X
the impact area, C=x and Y=Y~,

x
Y~=J

u(c) d-c

o

f

C2
1-

F

and with

reaches the
sc that

Y~ f U(f) d~

“v; ‘=;=; ~=~; “of
]= “)

Let the bottom shape be expressed hy:

q(x) = pl x+ p2 X2+ @3 X3+’...”. (.2)

T~,en u(~) = %’~ + Y~ f + Ys f= + ..,.

Since Ccx, if we sei L=
:=x sin a, then expression

(2) becomes ~(x) =plx+ ~zxa+ p3x3 . . . .

“ lT/2

=x / (Y1+Yax sin& +Y3x2sin2a +.. ..)da

o

.
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U(g) =kl j31+k2 ~2

‘where”

kl=~ = 0.636”;
n.

1C3 =:X: = 1.272;

k5=? x2x 4
T T = 1.696;

l-r

k7=~ x:x:x&=2.040;
l-r 5

In general,

t+ks I% f+ ..... (2a)

k2=l = 1.000”

k4=:

“1

= 1.500
(3)

k6 = $x
z

= 1.g75

kn=—.————
1

Tr/2

f
~inn-l a da

o

From kn there is derived the formula

For large values of n the following approximate for-
mula applies:

r .—
kn - 2n-1 (n> 4)

%

while for small va,lues of n the approximate formula is

kn -
r

2n - 4 +“n.— (n< 4)
?-l

In some cases the bottom shape is better expressed by

l-l= ~~X+~nXn

and the value of u is then obtained as

U“ = kl ~1 + kn fln ~n-l

.—
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For nonintegral values of n the values of kn may
ke read off figure 2.

In order to determine the force P exerted on the
float, we again consider the surface of the water to be at
rest and the float moving relatively to it with velocity
v = v(t). The momentum of the fluid at the lower half
plane is known to be

from which,
dc V

substituting ~~.;,, we obtain

(4)

(5)

The momentum of the se~.plane of mass m is equal to
m (V. - V) and for the case we are here considering where
the elasticity, for example, of the landing ge?.r and float
bottom is neglected, this is equal t’o the momentum impart-
ed to the fluid. With

UP ()
B=
F

M=—2m- (6)

and

V=vo
l+w~2

(.7)

(8)

From expression (8) it may he seen that v(f) does not
depend on the bottom shape.but only on the width of the
wetted surface and on the mass. If the work of deformat-
ion is neglected then

dV
P=- ‘=

and me thus obtain

(9)

(lo)

For briefness, we set
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Bvoa =pl;~P~
P“.~—=
PI –

(11)
,,
so that “ .

B= f (12)—
(1 + ~ f~)3u(~)

The pressure dist~ibution cn the float bottom will now
he determined. For X<C2 the velocity potential is:

cP’- TJ/-–– . -d=w
The fluid pressure p is, in g~neral,

[

aw++~ +F(t)P=-P
Ti 2

1

In the case me are consid.erin,g F(t) is constant
since there is nn superposition of external variable press-
ures. On the surface of the water F(t) =- pL/~” If p

is the pressure above the air pressure pL then

We have

[8
P=- Pl~ + * VX2

1 1
L -1

acJ
‘X = - ax

so that

p_v2——— _

p u jfi-~

The last term of the above equation does not apply to the
edge of the impact area and is small compared to the first
t170 terms.

With the aid of (8), (9), and (10), we obtain:

.’ P1
,P=.—–

“n;k

This formula does not give correct values

U(1+WE2)
—

1

-- (14)

“(L)
2’

2 -1
x

for the edge of.

— —
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the imuact area. There the flow is similar to that about

a Planing surface moving sideways with velocity

dc_Vvl = —. -
dtu

(15)

The maximum pressure that is set up is therefore,

P

p.,,

max =q1=~v12 (16)
or with

P = q~ = q~
1

max 2
(l+vf2) u2(g)

1

ITHE CONCEPT OF “AN EQUIVALENT RIGID BOTTOM TO

REPLACE THE ELASTIC BOTTOM

(17)

From equation (12) it may be seen that g(~) depends
only on the form parameter of the float bottom. Such a
parameter may also be found for a float with elastic bot-
tom. Let Yrel(t) he the elastic displacement at position

~ due to the load P(~), then

where To(f) represents the shape of the nondeformed
float bottom and ~(~) the shape of a nonelastic float
bottom which replaces that of the elastic float. The re-
sults obtained for the rigid float may thus be applied to
the case of the elastic float. The equivalent rigid float
fully takes into account the rate of expansion of the width
dc/dt due to the elasticity; that is, the main part of the
deformation; and only a small part of the deformation is
neglected, namely, that of the bottom opposite the chord
between t,he keel and edge of the impact area.

We must next consider how Yrel is to he determined.

It may be seen from equation (14) for the pressure distri-
bution that the relative distribution of the pressure is
essentially independent of the shape of the float bottom,
i.e., of u(~) since the last term in the brackets is very
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small compared. to the other terms for the greatest part of’

the range o<x<~. .,,

If the elastic deformation for the same relative pres-
sure distribution is proportional to the total load, then
the deformation under the load ~(~) at any position ~
may be expressed in the form

Trel(E) =2(5) (ao+al f+a2 !.2+a3 f3+ . ...) (19)
.“

or with 5=X.

‘Trel(x) ‘~(x) (a. + al x+ a2 X2 +a3 X3 + . ...)

For liriefness we shall denote the ex-oression in parenthe-
ses which takes account of the elasticity by A(E):

The coefficients a. , al, aa , a3 must be determined,

for each type of float, either by experiment or computa-
tion. The pressure distributions given by equation (14),
which applies to rigid floats, are to be substituted and
thus the bending at the edge of the impact area determined’.

We have assumed that the elastic deformation was pro-
portional to the load P, but due to the small thickness
of the float bottom this assumption will in many cases not
grove to be correct. In these cases, however, it may be
taken as a first approximation that for a moderate in-
crease in an assumed loading the increase in the deforma-
tion is proportional to the load increase.

In order to determine the deformation it may be as-
sumed first that the load is the same as that exerted on
the nondeformed float on impact, the corresponding defor-
mation under this load determined, and then the deforma-
tion when the load is slightly increased. In this way an
expression for the deformation may be found of the forh

Vrel(x) = Vorel(x) + ~(ao + al x + a2 X2 + •~00)

~0 + ‘QOrel = fio = 11 x + & “X2 + F3 X3 + .,*,

,and the same formulas apply for the determination of the

‘.=. —
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impact force as for the case where the deformation was
take~ proportional to the load, provided we replace pi

This method of computation is admissible provided the
equation for Yrel gives sufficiently accurate values

corresponding to the load P first obtained; otherwise,
the computation must be repeated for a new value of P.

PROCESS FOR OBTAINING THE EQUIVALENT I?LOAT BOTTOM AND

DETERMINING THE EFFECT OF THE ELASTICITY

ON TdE IMPACT FORCE

a) Mathematical formulation of the problem as an in-.—— —.—
tegral equation.- Ifehave given

—.—
~P , A(~)” and seek

to determine Trel* From equations (12) and (19)

‘Qrel = ‘—
t A(f) .(20)

(1 + V 52)3 (Uo(f) + urel( f))

“and therefore,

and from equations (1) and. (18)

so that for the d.etermination of ~rel, we obtain the

following relation:

t A(t) 1
‘flO(x) = - ‘nre~ (x ) + fx-——-—-—”— __

d~ (21),_—-

0 (l+W 52)3/1 - (+)2 ‘rel(f)

This is a nonhomogeneous, nonlinear integral (Volterra)

equation of the second class. No direct methods have so

far been developed for the solution of equations of this
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kind. In the case, however, where there exists a solution

u(~) = o“ the iteration method may probably lead to the
solution.

b) Development into series and approximate solutions.-
Instead of carrying out the iteration process a solution
was first attempted by development into series and the
following series were-tried:

A, IT =po + pl ~ + pa 52 + ...
.

B. l-r(1+ lJf2)3 =p I + p I g + p2J ~: + ...
0 1

c* llre~=PI’ x+ P2’x2+P3 ‘X3+...

These expressions may be simplified, depending on the type
of float, by the elimination, for example, of the first
term of the series. None of these series, hovev,er, con-
verges in general (corresponding to the nonconverging of

the series in the development of ~~~ = 1 - x + X2 - X3+ -

..* for x > 1).

It was then attempted. to find approximate solutions
but it was not possible to obtain good approximations since
the system of equations to be solved was no longer linear
so that this method, too, W.aS unsatisfactory.

The possibility of using the iteration method was not
tried since it could only be applied to individual cases
in connection with a granhical process, and the results
thus obtained would then-have no general significance.

C) Obtaining solutions by applying the inverse proc-.——.—.. _ _
ess.- ‘To obtain results of more general application, the

——

~erse process may be employed; that is, we start out
with the deformed bottom shape and seek to find the origi-
nal undeformed shape.

We thus have as given ‘0 = V. + l-lre~ and the function

A(E), and we obtain in turn p, Vrel, and TIO:

As an example, we choose the values
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. .

(23)

which represent a straight V bottom flcat of a seaplane
having a very large mass. We thus obtain:

. mQ=B~x- + Cp g(x) .
—
Trl,.

or with

U. =

. .

B=—

~. =

_L–
kl $1

so that

3
T—=l
B

-$(klao+lz2al ~+kz m2 52)
—0

and at f=l, where the maximum impact force is to be ex-

— I
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petted,
,,

%el = B_(1)
. .

— g7T -1= -~(kluo+kaal+k~as +.. .)
B—o

The deformation is:

and attains its maximum value for

_#-_-[R(g) + ~ g’(f)] = o

From the above equation

and therefore

or

and thus (for ~<1)

For ~>1 the greatest deformation is at ~=1,

so that

or

-.
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and therefore,

As a first example (fig. %a), let the following val-

ues be chosen:

and

so that

~=~(1-g) (CLO=O, CL1=l, CL2=-1)

In this case the bcttom (construction A) is deformed be-
tween the keel and the chine in such a manner that for a
constant impact force ~rel would be a parabola.

The maximum deformation is at

so that

~rel _ 27 firel
._. __(4-Tr)m= Trel

2,gg —
%
—o

~(l)

The relative increase in the impact force in this case
is the~efore 2.g9 times the ratio of the maximum deformat-

ion Vrel to the dead rise q(l).

As a second example (fig. xb), let the following val-

ues be chosen:

and

so that

tR=a (a. = o, al = o, U2 = 1)—
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In this case (construction %b), the bottom is elastic
at the sides so that the chine moves up on impacts The
form of the .A function is then obtained by assuming a
rigid bottom with the impact force approximately concen-
trated near the edge of the impact area.

The maximum deformation is now at X=17 so that

grel - ~ ~rel(l)
— =
B—0 Ii(l)

This construction therefore leads to a decrease in
the impact force, namely, by twice the ratio of the defor-
mation at the edge to the final dead rise Ii(l).

For the third example (fig. 3c), let the values chosen
be:

T=BIX

and A =Q(l- 52)

so that

R=l- g2(aQ=l, a,=o, m2=- 1)

(construction C).

sc that

~rel _ 3 ~rel
— — = 2.6 ‘~
go –“mm2

In this case, therefore, the relative increase in the
impact force is 2.6 times the ratio of the maximum defor-
mation to the dead rise.

From these examples it may be deduced that under cer-
tain conditions the effect of the elasticity of the bottom
may be o,f some importance but in especially unfavorable

.
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cases the effect may even be more considerable, so that no
conclusions of general application can be attached to the
results obtained from the examples just given.

SUMivlARY

For several particular cases of possible float-bottom
shapes the impact force due to the elasticity deformation
was compared with that obtained for the rigid bottom. The
work carried out considers, however, only part of the ef-
fect of the elasticity on landing and obviously the less
important part. A much more important effect is that of
the elastic connection between the principal masses of the
seaplane and ‘the floats, and this problem still avaits so-
lution.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.

I
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Figure

C,E—. —.— -t———~
x,x

~ = B/2
C = B/2

1 .- Notation for rigid V-type float bottom landing on
water.

I

Q

v

2.0
II -... ‘ ,-- IV

(a) 1~1’
1.6

1*V
1.2

kn

v

II \ ~ ~ IV

.8 (b) 111

.4 I _+__ v

~1
II , ! , IV

o
0 2 4 6 8 (c) III

n Figure 3.- Several types of

Figure 2.- Values of kn.
possible deforma-

tion for float bottoms.

(a) Points I,II,III,IV, andV
are mutually fixed and

bottom is deformed between II-III and III-IV.
(b) Points I,IIJ andV are mutually fixed and bottom is deformed at
II and IV. (c) Points I,II,IV and V are mutually fixed and deformation
is possible at the keel III.

1. —..
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